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Variational calculus in statics

Q - manifold of configurations

Γ - admissible processes: one-dimensional oriented submanifolds with
border

W : Γ→ R - cost function
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Variational calculus in statics

b

Γ

W : Γ→ R - cost function
I additive
I local, i.e. W(γ) =

∫
γ

W , for W positively homogeneous function on

the set ∆ of vectors δq tangent to admissible processes

(Q,∆,W ) contains all the information about the system!
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Variational calculus in statics

In statics we are interested in finding equilibrium points of the system,
isolated as well as interacting with other systems.

Definition
Point q ∈ Q is an equilibrium point of the system if for all processes
starting in q the cost function is positive, at least initially.

First order necessary condition:

if q is an equilibrium point than ∀δq ∈ ∆q W (δq)  0.
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Variational Calculus in statics

Interactions between systems are described by composite systems

system (1) and (2) have the
same configurations Q

∆ = ∆1 ∩∆2

W = W1 + W2

There are distinguished systems called regular

not constrained: ∆ = TQ

the cost function is the differential of an internal energy function

W (δq) = 〈dU(q), δq〉.

If q is an equilibrium point for regular system then dU(q) = 0
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Variational Calculus in statics

For every point q ∈ Q we make a list of all regular systems in equilibrium
with our system.

A regular system at q is represented by a covector ϕ ∈ T∗qQ

If our system is in equilibrium with a regular system ϕ than

∀δq ∈ ∆q W (δq)  〈ϕ, δq〉

The subset C ⊂ T∗Q of all regular systems in equilibrium with our
system is called a constitutive set.

The passage from (Q,∆,W ) to C is called a Legendre-Fenchel
transformation.

For large class of systems C contains all information of the system.

For regular system C = dU(TQ).
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Werner Fenchel (1905-1988)
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For other theories, e.g. statics of an elastic rod, mechanics, different field
theories... we need

Configurations Q,

Processes (or at least tangent vectors TQ),

Functions on Q (to define regular systems),

Covectors T∗Q (to find constitutive set).
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Mechanics for finite time interval

Let M be a manifold of positions of mechanical system. We will use
smooth curves in M and first order Lagrangians

Configurations:
Q = {q : [t0, t1]→ M}.

Functions: S(q) =

∫ t1
t0

L(q̇)dt.

Curves in Q come from
homotopies: χ : R2 → M

Tangent vectors are equivalence
classes of curves

b
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t1
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b
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Mechanics for finite time interval

Tangent vectors are equivalence classes of curves: two curves γ, γ′ are
equivalent if

γ(0) = γ′(0) = q and for all functions
d
ds

S ◦ γ(0) =
d
ds

S ◦ γ′(0)

(as on manifold...)

Covectors dS(q) are equivalence classes of pairs (q, S): two pairs
(q,S), (q′,S ′) are equivalent if

q = q′ and for all curves
d
ds

S ◦ γ(0) =
d
ds

S ′ ◦ γ(0)

(as on manifold...)

Constitutive set of a regular system with action functional S is described
by dS(Q). Not very convenient!
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Mechanics for finite time interval

We need convenient representations of vectors and covectors:

d
ds

S ◦ γ(0) =

∫ t1
t0
〈EL(q̈), δq〉dt+

〈 PL(q̇(t1)), δq(t1) 〉 − 〈PL(q̇(t0)), δq(t0) 〉

Tangent vectors are in one-to-one correspondence with curves in TM

κ : [γ] 7→ δq
b

b

b

b

b

b

b

b

bδq

Covectors are in one-to-one correspondence with triples (f , p0, p1)

where
f : [t0, t1]→ T∗M, pi ∈ T∗q(ti )M,
α : (f , p0, p1) 7→ dS(q).
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b
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b
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Mechanics for finite time interval

We have found another representation of covectors (Liouville structure):

α : {(f , p0, p1)} −→ T∗Q

The dynamics is a subset D of {(f , p0, p1)}

D = α−1(dS(Q)),

i.e.
D = {(f , p0, p1) : f (t) = EL(q̈(t)), pi = PL(q̇(ti )}
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Mechanics for infinitesimal time interval

Let M be a manifold of positions of mechanical system. We will use
smooth curves in M and first order Lagrangians

Configurations: Q = TM,
q = ẋ(t)

Functions: S(q) = L(ẋ(t))

Curves in Q come from
homotopies: χ : R2 → M

Tangent vectors are equivalence
classes of curves in TM, i.e
elements δq = δẋ of TTM

b

ẋ(t)

b

b

b

b

b

b

t
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b
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Mechanics for infinitesimal time interval

Tangent vectors TQ = TTM

Since Q = TM is a manifold, covectors are just elements of T∗TM

The constitutive set of a regular system is dL(TM) ⊂ T∗TM. Again not
very convenient.
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Mechanics for infinitesimal time interval
We need convenient representations of vectors and covectors:

Tangent vectors δẋ are in one-to-one correspondence with vectors
tangent to curves t 7→ δx(t) in TM

κM : TTM 3 δẋ 7→ (δx)· ∈ TTM
b

b

b

b

b

b

t

s

b

b

b

b

b

b

b

b

bδq

Covectors, i.e. elements of T∗TM are in one-to-one correspondence
with eqiuvalence classes of pairs (f , p),

p : R→ T∗M, f : R→ T∗M

(f , p), (f ′, p′) are equivalent at t if

〈f (t), δx(t)〉+
d
dt
〈p(t), δx(t)〉 = 〈f ′(t), δx(t)〉+

d
dt
〈p′(t), δx(t)〉
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Mechanics for infinitesimal time interval

An equivalence class of (f , p) is an element of TT∗M

[(f , p)] = ṗ(t) + f (t)v

where f (t)v is a vector tangent to the curve s 7→ p(t) + sf (t).

We get also the tangent evaluation between T∗TM and TTM defined
on elemens ṗ and (δx)· with the same tangent projection δx on TM:

〈〈ṗ, (δx)·〉〉 =
d
dt
〈p(t), δx(t)〉.

The identification of covectors (T∗TM) with elements TT∗M is the
map

αM : TT∗M −→ T∗TM

dual to κM
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Lagrangian side of the Tulczyjew Triple

M - positions,
TM - configurations,
L : TM → R - Lagrangian
T∗M - phase space

D = α−1M (dL(TM)))

λ : TM → T∗M, λ(v) = ξ(dL(v)), λ(x i , ẋ j) = (x i ,
∂L
∂ẋ j

).

D =

{
(x i , pj , ẋk , ṗl) : pi =

∂L
∂ẋ i

, ṗj =
∂L
∂x j

}
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, ṗj =
∂L
∂x j

}

KG (UW) Lagrangian... 27/06/2011 19 / 32



Lagrangian side of the Tulczyjew Triple

M - positions,
TM - configurations,
L : TM → R - Lagrangian
T∗M - phase space

D = α−1M (dL(TM)))

λ : TM → T∗M, λ(v) = ξ(dL(v)), λ(x i , ẋ j) = (x i ,
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∂L
∂ẋ i

, ṗj =
∂L
∂x j

}

KG (UW) Lagrangian... 27/06/2011 19 / 32



Lagrangian side of the Tulczyjew Triple

M - positions,
TM - configurations,
L : TM → R - Lagrangian
T∗M - phase space

D = α−1M (dL(TM)))

λ : TM → T∗M, λ(v) = ξ(dL(v)), λ(x i , ẋ j) = (x i ,
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Hamiltonian side of the Tulczyjew triple
There is a canonical isomorphism

R : T∗TM −→ T∗T∗M.

It is an isomorphism of double vector bundles and (anti)symplectomor-
phism. As a symplectic relation it is generated by the canonical evaluation:

T∗M ×M TM 3 (p, ẋ) 7−→ 〈p, ẋ〉 ∈ R

Composed with αM it gives another Liouville structure for TT∗M:

βM : TT∗M −→ T∗T∗M.

We can therefore find another generating object for D. Since composing
symplectic relations means adding generating functions, we have

E (p, ẋ) = 〈p, ẋ〉 − L(ẋ)

that in some cases can be reduced to Hamiltonian function H on T∗M.
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Hamiltonian side of the triple

T∗M - momenta
Hamiltonian generating
family
E : T∗M ×M TM → R
or Hamiltonian function
H : T∗M → R

D = β−1M (dH(T∗M)))

D =

{
(x i , pj , ẋk , ṗl) : ṗi = −∂H

∂x i
, ẋ j =

∂H
∂pj

}
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The Tulczyjew triple for mechanics

T∗T∗M

ζ   
BBBBB

πT∗M

������������
TT∗M

αM //

TπM ��?????

τT∗M

��

βMoo T∗TM
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��?????

ξ

��

TM
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��
TM //
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������������
oo TM
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T∗M
πM
""DDDDD T∗M //

πM
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oo T∗M
πM
  BBBBB

M M //oo M
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Other triples - elastic rod
Let M be a manifold. We use smooth curves in M and second order
Lagrangians:

L : T2M 3 ẍ 7−→ L(ẍ) ∈ R.
We concentrate on infinitesimal picture.

Configurations Q = T2M, q = ẍ(t). The set of configurations is a
manifold, therefore

TQ = TT2M T∗Q = T∗T2M.

We observe that there is the natural identification of T2M as a subset
of TTM:

T2M 3 (x i , ẋ j , ẍk) 7−→ (x i , ẋ j , ẋk , ẍ l) ∈ TTM

We can therefore treat the second order theory as a first order theory
on TM with constraint

{(x i , ẋ j , x ′k , ẋ ′l) ∈ TTM : ẋ j = x ′k}
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Other triples - elastic rod
We look for the convenient representation of covectors. We use
calculations on finite interval:

d
ds

S ◦ γ(0) =

∫ b
a

(
dL
dx i
− d

dt
dL
dẋ i

+
d

dt2
dL
dẍ i
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dt
dL
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a

”Momenta” are elements of T∗TM.
The constitutive set: DL of T∗TTM is generated by a function on
submanifold.
The convenient representation of DL is
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dẍ
, π′ =

dL
dx
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dẋ i

+
d

dt2
dL
dẍ i
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dẍ i

)
]δx idt+[(

dL
dẋ j
− d

dt
dL
dẍ j
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dẋ
, ρ =

dL
dẍ
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dẋ j
− d

dt
dL
dẍ j
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π + ρ′ =
dL
dẋ
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Other triples - elastic rod

The Tulczyjew triple for elastic rod:

T∗T∗TM

##GGGGG

�������������
TT∗TM

αTM //

""FFFFF

��											

βTMoo T∗TTM

""FFFFF

��											

TTM

��											
TTM //

������������
oo TTM

������������

T∗TM

$$IIIII T∗TM //

##GGGGG
oo T∗TM

##GGGGG

TM TM //oo TM

Generating object for DH :

E : T∗TM ×TM T2M → R

Generating object for DL

L : T2M → R, T2M ⊂ TTM.
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Other triples - elastic rod

The Tulczyjew triple for elastic rod:
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Other triples - Newtonian mechanics
The Newtonian space-time is a (N,V , τ, g), where N is a four-dimensional
affine space modeled on V , τ ∈ V ∗, g : E0 → E ∗0 , E0 = ker τ .

b

E0 E1

u

v

V

iu(v)

Homogeneous Lagrangian depends on an
inertial frame u

Lu(x , v) =
m
2
〈g(iu(v)), iu(v)〉−〈τ, v〉U(x)

The transformation rule is an affine one:

Lu′(x , v) = Lu(x , v) + 〈σ(u, u′), v〉

The frame independent Lagrangian is not a function. It is a section of
the bundle N ×W −→ N × V

(W ,w) is a five dimensional special vector space, W /〈w〉 = V

KG (UW) Lagrangian... 27/06/2011 26 / 32



Other triples - Newtonian mechanics
The Newtonian space-time is a (N,V , τ, g), where N is a four-dimensional
affine space modeled on V , τ ∈ V ∗, g : E0 → E ∗0 , E0 = ker τ .

b

E0 E1

u

v

V

iu(v)

Homogeneous Lagrangian depends on an
inertial frame u

Lu(x , v) =
m
2
〈g(iu(v)), iu(v)〉−〈τ, v〉U(x)

The transformation rule is an affine one:

Lu′(x , v) = Lu(x , v) + 〈σ(u, u′), v〉

The frame independent Lagrangian is not a function. It is a section of
the bundle N ×W −→ N × V

(W ,w) is a five dimensional special vector space, W /〈w〉 = V

KG (UW) Lagrangian... 27/06/2011 26 / 32



Other triples - Newtonian mechanics
The Newtonian space-time is a (N,V , τ, g), where N is a four-dimensional
affine space modeled on V , τ ∈ V ∗, g : E0 → E ∗0 , E0 = ker τ .

b

E0 E1

u

v

V

iu(v)

Homogeneous Lagrangian depends on an
inertial frame u

Lu(x , v) =
m
2
〈g(iu(v)), iu(v)〉−〈τ, v〉U(x)

The transformation rule is an affine one:

Lu′(x , v) = Lu(x , v) + 〈σ(u, u′), v〉

The frame independent Lagrangian is not a function. It is a section of
the bundle N ×W −→ N × V

(W ,w) is a five dimensional special vector space, W /〈w〉 = V

KG (UW) Lagrangian... 27/06/2011 26 / 32



Other triples - Newtonian mechanics
The Newtonian space-time is a (N,V , τ, g), where N is a four-dimensional
affine space modeled on V , τ ∈ V ∗, g : E0 → E ∗0 , E0 = ker τ .

b

E0 E1

u

v

V

iu(v)

Homogeneous Lagrangian depends on an
inertial frame u

Lu(x , v) =
m
2
〈g(iu(v)), iu(v)〉−〈τ, v〉U(x)

The transformation rule is an affine one:

Lu′(x , v) = Lu(x , v) + 〈σ(u, u′), v〉

The frame independent Lagrangian is not a function. It is a section of
the bundle N ×W −→ N × V

(W ,w) is a five dimensional special vector space, W /〈w〉 = V

KG (UW) Lagrangian... 27/06/2011 26 / 32



Other triples - Newtonian mechanics
The Newtonian space-time is a (N,V , τ, g), where N is a four-dimensional
affine space modeled on V , τ ∈ V ∗, g : E0 → E ∗0 , E0 = ker τ .

b

E0 E1

u

v

V

iu(v)

Homogeneous Lagrangian depends on an
inertial frame u

Lu(x , v) =
m
2
〈g(iu(v)), iu(v)〉−〈τ, v〉U(x)

The transformation rule is an affine one:

Lu′(x , v) = Lu(x , v) + 〈σ(u, u′), v〉

The frame independent Lagrangian is not a function. It is a section of
the bundle N ×W −→ N × V

(W ,w) is a five dimensional special vector space, W /〈w〉 = V

KG (UW) Lagrangian... 27/06/2011 26 / 32



Other triples - Newtonian mechanics

About affine objects:

K. Grabowska, J. Grabowski and P. Urbanski, AV-differential
geometry: Poisson and Jacobi structures, J. Geom. Phys., 52 (2004),
398–446.

K. Grabowska, P. Urbański: ”AV-differential geometry and calculus of
variations” Proceedings of the XV International Workshop on
Geometry and Physics (2006)
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Other triples - Newtonian mechanics

f(v)

v

W

V

b

ϕ2

ϕ1

The difference of two sections is a
function ϕ2 − ϕ1 = f

(v1, ϕ1) and (v2, ϕ1) are equivalent if
v1 = v2, d(ϕ2 − ϕ1)(v) = 0

The equivalence class is an ”affine
covector” dϕ1(v)

The set of all affine covectors is an affine
bundle
PW → V , trivial, i.e. PW = V × P.
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Other triples - Newtonian mechanics
Frame independent lagrangian L is a section of N ×W → N × V .
The constitutive set dL(N × V ) is a subset of P(N ×W )
Momenta are elements of N × P
The Liouville structure coming from convenient representations of
momenta is

α : T(N × P) −→ P(N ×W )

The lagrangian side of the triple is:

KG (UW) Lagrangian... 27/06/2011 29 / 32
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α //

$$IIIII

�������������
P(N ×W )

$$JJJJJ
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N × P N × P

N N

KG (UW) Lagrangian... 27/06/2011 29 / 32



Other triples - Newtonian mechanics
Frame independent lagrangian L is a section of N ×W → N × V .
The constitutive set dL(N × V ) is a subset of P(N ×W )
Momenta are elements of N × P
The Liouville structure coming from convenient representations of
momenta is

α : T(N × P) −→ P(N ×W )

The lagrangian side of the triple is:

D �
� // T(N × P)

α //

$$IIIII

�������������
P(N ×W )

$$JJJJJ
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λ

ttiiiiiiiiiiii
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Other triples - Newtonian mechanics
There is an isomorphism

T∗(N × P) ' P(N ×W )

It is possible therefore to find another Liouville structure for T(N × P):

β : T(N × P) −→ T∗(N × P)

We get this way the Hamiltonian side of the triple:

The generating object in this case is not a single Hamiltonian function but
a family of Hamiltonians.
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Other triples - Newtonian mechanics

The Tulczyjew triple for frame independent, homogeneous Newtonian
mechanics:

T∗(N × P)

##HHHHH

��											
T(N × P)

βoo

##FFFFF

��












α // P(N ×W )

##GGGGG

��											

N × V

�������������
N × V

��											
oo // N × V

�������������

N × P

$$IIIIII N × P

##HHHHHH
oo // N × P

$$HHHHHH

N Noo // N
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Conclusions

Tulczyjew triples come from variational calculus, that is adapted for
statics, but can be also used in other theories

The triples are constructed, not postulated!

THANK YOU!
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