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» additive
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Variational calculus in statics

dq

@ W: I — R - cost function
» additive

> local, i.e. W(y) = / W, for W positively homogeneous function on
v

the set A of vectors g tangent to admissible processes

e (Q,A, W) contains all the information about the system!
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KG (UW) Lagrangian... 27/06/2011 6 /32



Variational calculus in statics

In statics we are interested in finding equilibrium points of the system,
isolated as well as interacting with other systems.

Definition
Point g € Q is an equilibrium point of the system if for all processes
starting in g the cost function is positive, at least initially.

KG (UW) Lagrangian... 27/06/2011 6 /32



Variational calculus in statics

In statics we are interested in finding equilibrium points of the system,
isolated as well as interacting with other systems.

Definition
Point g € Q is an equilibrium point of the system if for all processes
starting in g the cost function is positive, at least initially.

First order necessary condition:

if g is an equilibrium point than Yoq € A, W(dq) > 0.
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Variational Calculus in statics
Interactions between systems are described by composite systems

% 0 @ system (1) and (2) have the

same configurations @
e A=A1NA>
ISi o W=W+ W,

@

There are distinguished systems called regular
@ not constrained: A =TQ
@ the cost function is the differential of an internal energy function

W(éq) = (dU(q),0q).

e If g is an equilibrium point for regular system then dU(g) =0
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For every point g € Q@ we make a list of all regular systems in equilibrium
with our system.
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@ A regular system at q is represented by a covector ¢ € T, Q
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Variational Calculus in statics

For every point g € Q@ we make a list of all regular systems in equilibrium
with our system.

. *k
@ A regular system at q is represented by a covector ¢ € T, Q

@ If our system is in equilibrium with a regular system ¢ than

Vég € Aqg W(dq) > (p,dq)

The subset C C T*Q of all regular systems in equilibrium with our
system is called a constitutive set.

The passage from (Q, A, W) to C is called a Legendre-Fenchel
transformation.

For large class of systems C contains all information of the system.
For regular system C = dU(TQ).
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For other theories, e.g. statics of an elastic rod, mechanics, different field
theories... we need

o Configurations Q,

@ Processes (or at least tangent vectors TQ),
e Functions on Q (to define regular systems),
°

Covectors T*Q (to find constitutive set).
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smooth curves in M and first order Lagrangians

KG (UW) Lagrangian... 27/06/2011 11 /32



Mechanics for finite time interval

Let M be a manifold of positions of mechanical system. We will use
smooth curves in M and first order Lagrangians

o Configurations: N
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Let M be a manifold of positions of mechanical system. We will use
smooth curves in M and first order Lagrangians

e Configurations: N
Q= {q : [to, tl] — /V/} !
t
e Functions: S(q) = / 1 L(g)dt.

to
@ Curves in Q come from
homotopies: y : R? — M
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Mechanics for finite time interval

Let M be a manifold of positions of mechanical system. We will use
smooth curves in M and first order Lagrangians

Configurations: N
Q= {q: [to, t1] — M}. '

t1

Functions: S(q) :/ L(g)dt.

to
Curves in @ come from
homotopies: y : R? — M

Tangent vectors are equivalence
classes of curves
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e Tangent vectors are equivalence classes of curves: two curves v, 7' are
equivalent if

v(0) =+/(0) = g and for all functions %S oy(0) = %5 0+'(0)

(as on manifold...)
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@ Tangent vectors are equivalence classes of curves: two curves v, 7/ are
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Mechanics for finite time interval

@ Tangent vectors are equivalence classes of curves: two curves v, 7/ are
equivalent if

v(0) =+/(0) = g and for all functions %S oy(0) = %5 0+'(0)

(as on manifold...)

e Covectors dS(q) are equivalence classes of pairs (g, S): two pairs
(g,5), (¢',S’) are equivalent if

d d
= ¢  and for all —S 0)=—-5 0
g =g and for all curves — o (0) s o (0)
(as on manifold...)
Constitutive set of a regular system with action functional S is described
by dS(Q). Not very convenient!
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Mechanics for finite time interval

We need convenient representations of vectors and covectors:

9 504(0) = / (EL(5),5q)dt+
(PL(a()).5a(t)) — (PL(a(to)).5qlto) )

@ Tangent vectors are in one-to-one correspondence with curves in TM

K [y]— 0q
0q

e Covectors are in one-to-one correspondence with triples (£, po, p1)

Po
where

Q. (fvpoapl) = dS(q) f P
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Mechanics for finite time interval

We have found another representation of covectors (Liouville structure):

o :{(f,po,p1)} — T"Q
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Mechanics for finite time interval

We have found another representation of covectors (Liouville structure):

a {(f7p07p1)} I T*Q

The dynamics is a subset D of {(f, po, p1)}

D = a7}(dS(Q)),

D =A{(f,po,p1) : f(t) =EL(4(), pi=PL(4(t;)}
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Let M be a manifold of positions of mechanical system. We will use
smooth curves in M and first order Lagrangians

e Configurations: Q = TM, (1)

q = x(t)
e Functions: S(q) = L(x(t))
@ Curves in Q come from
homotopies: y : R? — M
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Mechanics for infinitesimal time interval

Let M be a manifold of positions of mechanical system. We will use
smooth curves in M and first order Lagrangians

(t)

Configurations: Q@ = TM,
q = x(t)

Functions: S(q) = L(x(t))
Curves in Q come from
homotopies: y : R? — M

Tangent vectors are equivalence o[ 1N
classes of curves in TM, i.e
elements g = x of TTM
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Mechanics for infinitesimal time interval

@ Tangent vectors TQ = TTM

@ Since Q@ = TM is a manifold, covectors are just elements of T*TM

The constitutive set of a regular system is dL(TM) C T*TM. Again not
very convenient.
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Mechanics for infinitesimal time interval
We need convenient representations of vectors and covectors:

@ Tangent vectors dx are in one-to-one correspondence with vectors
tangent to curves t — 6x(t) in TM

Epm i TTM 3 6x— (6x) € TTM
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Mechanics for infinitesimal time interval
We need convenient representations of vectors and covectors:

@ Tangent vectors dx are in one-to-one correspondence with vectors
tangent to curves t — 0x(t) in TM

Epm i TTM 3 6x— (6x) € TTM

@ Covectors, i.e. elements of T*TM are in one-to-one correspondence
with eqiuvalence classes of pairs (f, p),

p:R—TM, f:R—-TM

(f,p), (f',p') are equivalent at t if

(f(1),0x(t)) + %(P(t),CSX(f)) = (F'(1), ox(£)) + —-(P'(1), (1))
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Mechanics for infinitesimal time interval

@ An equivalence class of (f, p) is an element of TT*M

[(F. p)] = p(t) + £(2)"

where f(t)¥ is a vector tangent to the curve s — p(t) + sf(t).
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where f(t)¥ is a vector tangent to the curve s — p(t) + sf(t).

@ We get also the tangent evaluation between T*TM and TTM defined
on elemens p and (0x)" with the same tangent projection dx on TM:
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Mechanics for infinitesimal time interval

@ An equivalence class of (f, p) is an element of TT*M

[(F. p)] = p(t) + £(2)"

where f(t)¥ is a vector tangent to the curve s — p(t) + sf(t).

@ We get also the tangent evaluation between T*TM and TTM defined
on elemens p and (0x)" with the same tangent projection dx on TM:

(b (53)) = - {p(8), x(2)).

@ The identification of covectors (T*TM) with elements TT*M is the
map
oy TT°M — TTM

dual to kpy
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M - positions,

TM - configurations,
L:TM — R - Lagrangian
T*M - phase space
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Lagrangian side of the Tulczyjew Triple

TT* M Sl T*TM

‘TM

™

M - positions,
TM - configurations, TTeM

L:TM — R - Lagrangian /
T*M - phase space M ™M ™
\Wf \ﬂf

T7TM
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Lagrangian side of the Tulczyjew Triple

D TT*M am T*TM < dL

~
71'1%\

M - positions,

TM - configurations,
L:TM — R - Lagrangian
T*M - phase space

D = ay (dL(TM)))
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Lagrangian side of the Tulczyjew Triple

D TT*M il T*TM < dL
M - positions, \ W%\
TM - configurations, TM ooiiifoi . TM
L:TM — R - Lagrangian /
T*M - phase space TM oo I — .
M M

D = ay (dL(TM)))
A TM — T*M, A(v) = £(dL(v)), X', %) = (X', @).
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Lagrangian side of the Tulczyjew Triple

D TT*M il T*TM <
M - positions, \ W%\
TM - configurations, TM oo fon
L:TM — R - Lagrangian
T*M - phase space ™M I — .
M M

D = ay (dL(TM)))

A TM = TM, A(v) = £(dL(v)), A(x', %) = (', 55)-
e oL oLy
D= (X apjaX 7p/) Lopi = 8)-(,'7 pj aXJ
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Hamiltonian side of the Tulczyjew triple
There is a canonical isomorphism

R:TTM — T*T*M.

It is an isomorphism of double vector bundles and (anti)symplectomor-
phism. As a symplectic relation it is generated by the canonical evaluation:

T*M xp TM > (p, %) — (p,x) €R
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Hamiltonian side of the Tulczyjew triple

There is a canonical isomorphism
R:TTM — T*T*M.

It is an isomorphism of double vector bundles and (anti)symplectomor-
phism. As a symplectic relation it is generated by the canonical evaluation:

T"M xp TM > (p,x) — (p,%x) €R
Composed with «y, it gives another Liouville structure for TT*M:
By TTM — T*T*M.

We can therefore find another generating object for D. Since composing
symplectic relations means adding generating functions, we have

that in some cases can be reduced to Hamiltonian function H on-T*M.
KG (UW) Lagrangian... 27/06/2011 20 / 32
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Hamiltonian side of the triple

T*M - momenta
Hamiltonian generating
family

E:T"M xy TM — R

KG (UW) Lagrangian...



Hamiltonian side of the triple

T*M - momenta
Hamiltonian generating
family

E:T"M xp TM — R
or Hamiltonian function
H: T"M — R
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T*M - momenta
Hamiltonian generating
family

E:T*M xpyTM — R
or Hamiltonian function
H:T"M — R
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Hamiltonian side of the triple

T*M - momenta
Hamiltonian generating
family

E:T*M xpyTM — R
or Hamiltonian function
H:T"M — R

D = By (dH(T*M)))

KG (UW) Lagrangian... 27/06/2011 21 /32



Hamiltonian side of the triple

T*M - momenta
Hamiltonian generating
family

E:T*M xpyTM — R
or Hamiltonian function

H:T*"M — R
M oo M
D = 5 (AH(T" M)
i ko . OH .. OH
v {(X P X 1) i = o X = 31?'}
J
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KG (UW)

The Tulczyjew triple for mechanics

TTM <M TTM— M M
\(\ T7rM\ ¢ \TM
M TM <Tru ™ ™
™ ™ /
™ ™™ ™™
M M

M

Lagrangian...

it
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Other triples - elastic rod

Let M be a manifold. We use smooth curves in M and second order
Lagrangians:
L:T?M 3 % +— L(X) € R.

We concentrate on infinitesimal picture.
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o Configurations @ = T?M, g = %(t). The set of configurations is a
manifold, therefore
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Other triples - elastic rod
Let M be a manifold. We use smooth curves in M and second order
Lagrangians:
L:T?M 3 % +— L(X) € R.
We concentrate on infinitesimal picture.
o Configurations @ = T?M, g = %(t). The set of configurations is a
manifold, therefore

TQ=TT°M  T'Q=T'T’M.

@ We observe that there is the natural identification of T2M as a subset
of TTM:

T2M 5 (x', %, %9) — (X', %, %K %) e TTM
We can therefore treat the second order theory as a first order theory
on TM with constraint

{(Xi,kj,xlk,k'I) ETTM: % =x*
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Other triples - elastic rod

We look for the convenient representation of covectors. We use
calculations on finite interval:
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Other triples - elastic rod

We look for the convenient representation of covectors. We use
calculations on finite interval:

d b rdL d dL d dL ;
@5”(0)—/3 (cr’><"_a’tcl>'<"+dt2d'>'<">]6x di+

M= Y EE J MR ek
def dt dxi > X R L
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Other triples - elastic rod
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Other triples - elastic rod

We look for the convenient representation of covectors. We use
calculations on finite interval:

d [ g b oy,
2 \dxi  dtdx’  dt? dxi

KO'L _ ddL) sxd 4+ 9L ik }
dxd  dtdxi dxk |,

@ "Momenta” are elements of T*TM.

@ The constitutive set: D; of T*TTM is generated by a function on
submanifold.

@ The convenient representation of Dy is

D CTT*TM, D =a74(DL)
D:{(X7X?7T7p7x7x77r7p)'
dL d., dL

[ = — =
R N e ™
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Generating object for D;
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Other triples - elastic rod

The Tulczyjew triple for elastic rod:

Brm

aTm

TT*TM

Dy & T*T*TM
/ TTI\/I TTI\/I
T*T/\/I T*TM 74 T*TM /

T*TTM 5DL

TM
Generating object for Dy: Generating object for D;
E:T"TM x1y T°M — R L:T°M >R, T?McCTTM.
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Other triples - Newtonian mechanics

The Newtonian space-time is a (N, V, 7, g), where N is a four-dimensional
affine space modeled on V, 7 € V*, g: Eg — Ej, Eg = ker .

E(] FEy
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The Newtonian space-time is a (N, V, 7, g), where N is a four-dimensional
affine space modeled on V, 7 € V*, g: Eg — Ej, Eg = ker .

@ Homogeneous Lagrangian depends on an
inertial frame u

E(] E1
m, . .
” Lu(x,v) = 5 (g(iu(V)), iu(v)) = (7, v) U(x)
v
iu(v) // @ The transformation rule is an affine one:
1%
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The Newtonian space-time is a (N, V, 7, g), where N is a four-dimensional
affine space modeled on V, 7 € V*, g: Eg — Ej, Eg = ker .

@ Homogeneous Lagrangian depends on an
inertial frame u

E(] FEy

u Lu(x,v) = 3 (8 (). (V) ~ (7. V) U(x)

l 7/ . . .
W), @ The transformation rule is an affine one:

Ly(x,v) = Lu(x,v)+ (o(u,d),v)

@ The frame independent Lagrangian is not a function. It is a section of
the bundle N x W — N x V

e (W, w) is a five dimensional special vector space, W /{w) = V
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Other triples - Newtonian mechanics
About affine objects:
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K. Grabowska, J. Grabowski and P. Urbanski, AV-differential

geometry: Poisson and Jacobi structures, J. Geom. Phys., 52 (2004),
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Other triples - Newtonian mechanics

About affine objects:

[3 K. Grabowska, J. Grabowski and P. Urbanski, AV-differential
geometry: Poisson and Jacobi structures, J. Geom. Phys., 52 (2004),
398-446.

@ K. Grabowska, P. Urbafiski: " AV-differential geometry and calculus of
variations” Proceedings of the XV International Workshop on
Geometry and Physics (2006)

KG (UW) Lagrangian... 27/06/2011 27 / 32



Other triples - Newtonian mechanics

W |
|
| o
f(v)
Y1
|
|
|
1
\% } v

KG (UW) Lagrangian...



Other triples - Newtonian mechanics

— @ The difference of two sections is a
} function o — 1 = f
P2
f(v)
$1
|
|
|
|
\% } v

KG (UW) Lagrangian...

N

p)
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@ The difference of two sections is a

function @y — 1 = f

e (vi,p1) and (v2, 1) are equivalent if

vi=wv2, d(p2—¢1)(v)=0
@ The equivalence class is an " affine

covector” dyi(v)
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Other triples - Newtonian mechanics

— @ The difference of two sections is a

| function o — 1 = f

e (vi,p1) and (v2, 1) are equivalent if

f(v) o1 Vi = Vo, d((P2 — (pl)(V) =0

@ The equivalence class is an " affine
covector” dyi(v)

@ The set of all affine covectors is an affine
v bundle
PW — V, trivial, i.e. PW = V x P.
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Other triples - Newtonian mechanics

@ Frame independent lagrangian L is a section of N x W — N x V.
@ The constitutive set dL(N x V) is a subset of P(N x W)
@ Momenta are elements of N x P

@ The Liouville structure coming from convenient representations of

momenta is
a:T(N xP)— P(N x W)

@ The lagrangian side of the triple is:

D& T(N x P) . P(N x W) gt
/ . S\
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Other triples - Newtonian mechanics
There is an isomorphism

T(N x P) ~P(N x W)
It is possible therefore to find another Liouville structure for T(N x P):
B:T(NxP)— T(N xP)
We get this way the Hamiltonian side of the triple:

T*(N x 77)

T(N xP)<D

N><V 7><V

The generating object in this case is not a single Hamiltonian function but

a family of Hamiltonians.
KG (UW) Lagrangian... 27/06/2011 30/ 32



Other triples - Newtonian mechanics

The Tulczyjew triple for frame independent, homogeneous Newtonian
mechanics:

x P) T(N x 73) P(N x W)

N x P
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Conclusions

@ Tulczyjew triples come from variational calculus, that is adapted for
statics, but can be also used in other theories

@ The triples are constructed, not postulated!

THANK YOU!

KG (UW) Lagrangian... 27/06/2011 32 /32



