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Abstract

The Virial’s theorem both in the classical and in the quantum frameworks is revisited
from a geometric approach, what enables us to loook at the Virial’s Therem from a
modern geometric perspective. The theory of one-parameter groups of non-strictly
canonical transformations is shown to play a relevant role.
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Introduction: The standard virial’s theorem

Inspired by the work of Carnot on heat engines, R. J. E. Clausius began a long study
of the mechanical nature of heat in 1851

Twenty years later, in a lecture delivered on June 13 of 1870, in the Association
for Natural and Medical Sciences of the Lower Rhine: On a Mechanical Theorem
Applicable to Heat, Claussius stated the theorem as The mean vis viva of the system
is equal to its virial.

vis viva integral is the total kinetic energy of the system

Latin word virias (the plural of vis) meaning forces was used by Clausius to coin the
word virial as the scalar quantity represented in terms of the forces Fi acting on the
system as

1
2
〈〈
∑
i

Fi · ri〉〉

and it can be shown to be 1/2 the average potential energy of the system.
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The quantum mechanical version of the Theorem is due to M. Born, W. Heisenberg,
and P. Jordan (Zeitschrift für Physik A Hadrons and Nuclei 35, 557 (1926)).

A generalisation of the Theorem is due to Lord Rayleigh in 1903 and more recent
contributions are due to:

H. Poincaré, Lectures on Cosmological Theories, Hermann, Paris, 1911.

E. Parker, Phys. Rev. 96, 1686-1689 (1954) .

S. Chandrasekhar and N.R. Lebovitz, Ap.J. 136, 1037–1047 (1962)

P. Ledoux developed a variational form of the virial theorem to obtain pulsational
periods for stars and investigate their stability (Ap. J. 102, 134–153 (1945))

S. Chandrasekhar and E. Fermi extended the virial theorem in 1953 to include the
presence of magnetic fields (Ap. J. 118, 116 (1953)).

Remark that in order to replace the time averages with something observable we can
use the ergodic theorem to replace time averages by phase space averages

The important point is the wide range of applicability of the virial theorem:
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a) it is applicable to dynamical and thermodynamical systems,

b) it can also be formulated to deal with relativistic (in the sense of special relativity)
systems,

c) it is applicable to systems with velocity dependent forces and viscous systems,

d) it provides less information that the equations of motion but it is simpler to apply
and then it can provide information concerning systems whose complete analysis may
defy description

e) In astronomy, the virial theorem finds applications in the dust and gas of interstellar
space as well as cosmological considerations of the universe as a whole and in other
discussions concerning the stability of clusters, galaxies and clusters of galaxies.
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Consider a particle of mass m under the action of a force F.

Clausius introduced in 1870 the virial function

G(x, ẋ) = mx · ẋ =
d

dt

(
1
2
mx · x

)
.

The time evolution of such function is given by:

dG

dt
= m ẋ · ẋ + x · F,

where use has been made of Newton second law: F = m ẍ.

When integrating this expression between t = 0 and t = T and dividing by the total
time interval T we find

1
T

[G(T )−G(0)] =
2
T

∫ T

0

Ec(ẋ) dt+
1
T

∫ T

0

x · F(x) dt = 〈〈2Ec(ẋ)〉〉+ 〈〈x · F〉〉,

where Ec denotes the kinetic energy and 〈〈A〉〉 means time average.

If the motion is periodic of period T or the possible values of the function G are
bounded and we take the limit of T going to infinity:

0 = 〈〈2Ec(ẋ)〉〉+ 〈〈x · F〉〉.
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In the particular case of a conservative force, F = −∇V , the dynamical evolution of
G is given by

dG

dt
= m ẋ · ẋ + x · F = 2Ec(ẋ)− x ·∇V,

and with an analogous integration from t = 0 to t = T

1
T

[G(T )−G(0)] =
2
T

∫ T

0

Ec(ẋ) dt− 1
T

∫ T

0

(x ·∇V ) dt = 〈〈2Ec(ẋ)〉〉−〈〈x ·∇V 〉〉.

When the motion is periodic of period T or the possible values of G are bounded
and we take the limit of T going to infinity:

0 = 〈〈2Ec(ẋ)〉〉 − 〈〈x ·∇V 〉〉.

If the potential V is homogeneous of degree k, Euler’s theorem of homogeneous
functions implies that x ·∇V = k V , and therefore,

2 〈〈Ec(ẋ)〉〉 = k 〈〈V (x)〉〉,

i.e. if E is the total energy,

〈〈Ec(ẋ)〉〉 =
k E

k + 2
, 〈〈V (x)〉〉 =

2E
k + 2

.
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For instance in the harmonic oscillator case, k = 2,

〈〈Ec(ẋ)〉〉 = 〈〈V (x)〉〉 =
1
2
E,

and in the Kepler problem, k = −1,

〈〈Ec(ẋ)〉〉 = −E, 〈〈V (x)〉〉 = 2E.

Relevant questions are: Where does the virial function G comes from?

Why the relation is simpler for power law potentials?

Why is the reason for the values of the coefficients?

Is there any generalisation?

What about a quantum mechanical counterpart?
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Virial’s theorem in Hamiltonian systems

Let us analyse the problem in the frame of Hamiltonian systems (M,ω,H).

Here ω is a symplectic form, i.e, a non-degenerated closed 2-form in M .

We restrict ourselves to the case of time-independent systems. We will show that
the preceding case is but a particular case of a more general result.

Let XF be the Hamiltonian vector field defined with Hamiltonian function F , defined
by

i(XF )ω = dF.

In particular the dynamics is given by the vector field XH defined by

i(XH)ω = dH.

For any two functions in M the Poisson bracket is given by

{F,G} = ω(XF , XG) = XGF = −XFG.
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Let φt denote the flow of XH . Such a flow commutes with XH , and having in mind
that, for any f ∈ C∞(M),

XHφ
∗
t f = φ∗tXHf =

d

ds
[φ∗s(φ

∗
t f)]|s=0 =

d

ds
(φ∗s+tf)|s=0 =

d

du
[φ∗uf ]|u=t,

we see that if we choose as f an observable function f = G,

d

dt
(φ∗tG) = φ∗t ({G,H}) = −φ∗t (XGH).

If we integrate both sides of this relation with respect to t from t = 0 to t = T ,

1
T

[G ◦ φT −G] = − 1
T

∫ T

0

(XGH) ◦ φt dt =
1
T

∫ T

0

{G,H} ◦ φt dt.

This result is sometimes known as Hypervirial Theorem: If the function remains
bounded in its time evolution, taking the limit when T goes to infinity:

〈〈{G,H}〉〉 = 0.

When M = T ∗R3 endowed with its canonical symplectic structure and consider the
function G(x,p) = x · p, the corresponding Hamiltonian vector field XG is

XG =
3∑
i=1

(
xi

∂

∂xi
− pi

∂

∂pi

)
,

10



i.e. it is the dilation generator, and if H is given by

H(x,p) =
1

2m
p · p + V (x) = H0(p) + V (x),

we recover from
(XGH)(x,p) = −2H0(p) + x ·∇V,

the standard result in the Hamiltonian framework:

1
T

[G ◦ φT −G] = 〈〈2H0〉〉 − 〈〈x ·∇V 〉〉,

and taking the limit of T going to infinity:

〈〈2H0〉〉 = 〈〈x ·∇V 〉〉.

A very important particular case is that of the Hamiltonian system defined by a
regular Lagrangian: (TQ, ωL, EL).

The virial theorem reduces to

1
T

[G ◦ φT −G] = − 1
T

∫ T

0

(XGEL) ◦ φt dt =
1
T

∫ T

0

{G,EL} ◦ φt dt.
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and if the function remains bounded in its time evolution, taking the limit when T
goes to infinity:

〈〈XGEL〉〉 = 0.

In the very simple case in which Q = R3 and

L(x, ẋ) =
1
2
m ẋ · ẋ− V (x) =⇒ EL(x, ẋ) =

1
2
m ẋ · ẋ + V (x),

then ωL = mdx ∧ dẋ, and when G is the observable function G(x, ẋ) = mx · ẋ,
then

XG(x, ẋ) = x ·∇x − ẋ ·∇ẋ,

and consequently, we recover the original virial’s theorem:

XGEL(x, ẋ) = x ·∇V (x)−m ẋ · ẋ =⇒ 〈〈2Ec(ẋ)〉〉 = 〈〈x ·∇V 〉〉.

A very important example is that of Lagrangian systems of mechanical type. Such
Lagrangians are defined by a Riemannian metric g in the base, the configuration
space Q. The corresponding kinetic energy is then given by

T =
1
2
g̃(D,D)

for any choice of the SODE vector field D. Here g̃ denotes the pull-back of g to TQ.
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Non-strictly canonical transformations

A diffeomorphism φ : M → M push forward tensorial fields and those diffeomor-
phisms leaving invariant a tensor field are called symmetries of such a tensor field.
For covariant tensors φ∗ means (φ−1)∗.

So: If Γ ∈ X(M), its symmetries are diffeomorphisms of M such that φ∗Γ = Γ.

If ω is a symplectic structure inM , its symmetries (to be called symplectomorphisms)
are diffeomorphisms of M such that φ∗ω = ω ⇐⇒ φ∗ω = ω.

The symmetries of H ∈ C∞(M) are the diffeomorphisms φ such that φ∗H = H ⇐⇒
φ∗H = H.

The remarkable point is that

i(XH)ω = dH ⇐⇒ i(φ∗XH)(φ∗ω) = d(φ∗H).
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Therefore symplectomorphisms that are symmetries of H are also symmetries of XH .

However, THERE ARE SYMMETRIES OF XH that are not symplectomorphisms

One-parameter subgroups of symmetry transformations of tensor fields are charac-
terized by the vanishing of the Lie derivative of the tensor field with respect to the
vector field generating the one-parameter subgroup:

[X,Γ] = 0, for vector fields.
LXω = 0, for symplectic forms.
XH = 0, for functions.

Given a Hamiltonian system (M,ω,H) one usually look for vector fields whose flows
are symplectomorphisms that are also symmetries of H and, therefore, symmetries
of XH . Then for each G ∈ C∞(M), the relation

XHG = {G,H} = −XGH

shows that XG is a symmetry of H if and only if G is a constant of motion (Noether’s
theorem).
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A diffeomorphism φ : M → M is said to be a canonoid transformation
for a Hamiltonian system (M,ω,H) when φ∗XH ∈ XH(M,ω) or equivalently
XH ∈ XH(M,φ∗ω). Of course, as ω is closed such condition is equivalent to
d(i(XH)φ∗ω) = 0.

Canonical tranformations are those transformations of M that are canonoid for each
Hamiltonian, i.e. such that φ∗(XH(M,ω)) ⊂ XH(M,ω).

If there exists a nonzero real number r ∈ R such that φ∗ω = r ω, the transformation
φ is canonical. The number λ is called valence of the canonical transformation.

The inverse property is true and one can show the existence for each canonical of a
factor r, such that φ∗ω = r ω.

In summary, symplectomorphisms are STRICTLY CANONICAL TRANSFORMA-
TIONS but ....

There exist more general canonical transformations such that

φ∗ω = r ω, r ∈ R.
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In the case of a vector field X whose flow is made up by canonical transformations
if there exists a function r(ε) such that φ∗εω = r(ε)ω. Therefore r(ε) = eaε and

LXω = aω, (a = r′(0)).

Note that a diffeomorphism of M such that

φ∗ω = r ω, φ∗H = r H.

is a symmetry of XH (leaves invariant the Hamiltonian vector field XH).

At the infinitesimal level, if LXω = aω and XH = aH, then [XH , X] = 0, because
using (LX iXH

− iXH
LX)ω = i([X,XH ])ω, we obtain from

LXdH − a i(XH)ω = d(aH)− a(dH) = 0 = (LX iXH
− iXH

LX)ω

that
i([X,XH ])ω = 0 =⇒ [X,XH ] = 0.
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In the case of a Hamiltonian dynamical system defined by a regular Lagrangian L,
(TQ, ωL, dEL), for diffeomorphisms φ of TQ defined from diffeomorphism ϕ of the
base, i.e. φ = ϕ∗ = Tϕ, it happens that

φ∗θL = θφ∗L, φ∗EL = Eφ∗L.

Correspondingly, at the infinitesimal level, for a vector field X ∈ X(TQ) that is a
complete lift, X = Y c, of a vector field in the base, Y ∈ X(Q),

LXθL = θXL, XEL = EXL.

On the other side, it can be shown that L′ defines the same Hamiltonian system as
L (i.e. ωL = ωL′ and EL = EL′) when there exists a closed 1-form α in Q such
that

L′ = L+ α̂,

where α̂ is the function in TQ defined by α̂(U) = α(τ∗(U)).

Therefore X = Y c is a symmetry of the Hamiltonian dynamical system defined by
the function L if there exists a closed form α in Q such that

XL = α̂.
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We can at least locally write α = dh̃ where h is a function in Q. Note that in this
case

d̂h = Γ(h̃), ∀ SODE Γ.

Theorem: Let X = Y c be such that XL = aL + d̂h, where a ∈ R and L is a
regular Lagrangian function. Then,

i) X is a symmetry of the dynamical vector field Γ (recall that i(Γ)ωL = dEL).

ii) The function G = i(X)θL − h̃ is such that ΓG = aL.

Proof.- First of all θXL = a θL + d̃h and therefore ωXL = aωL. Furthermore,
EXL = aEL. Consequently LXωL = aωL and LXEL = aEL, and we have seen
that this implies that [Γ, X] = 0.

Moreover, from

LΓ(i(X)θL) = i(X)LΓθL = i(X)dL = aL+ d̂h = aL+ Γ(h),

we see that
Γ(G) = Γ(i(X)θL − h) = aL.
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From this expression we obtain a virial type relation:

1
t2 − t1

[G(t2)−G(t1)] =
a

t2 − t1

∫ t2

t1

Ldt,

and consequently

lim
t1→−∞,t2→∞

1
t2 − t1

[G(t2)−G(t1)] = a 〈〈L〉〉.

For instance, in the particular case of the harmonic oscillator, dilations are such that
a = 2:

Y = x ·∇ =⇒ X = x ·∇ + ẋ ·∇ẋ

and then
XL = X

(
1
2
mẋ · ẋ− 1

2
mω x · x

)
= 2L,

and we obtain
1

t2 − t1

[
3∑
i=1

xi
∂L

∂ẋi

]t2
t1

= 2 〈〈L〉〉.
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Let X be the vector field in R given by

X = ξ(q)
∂

∂q

and therefore its complete lift is

Xc(q, v) = ξ(q)
∂

∂q
+ v

∂ξ

∂q

∂

∂v

If the Lagrangian L(q, v) is given by

L(q, v) =
1
2
m(q)v2 − V (q),

then
XcL(q, v) =

1
2
ξ m′(q)v2 − ξ V ′(q) + v ξ′(q)m(q) v,

and therefore the condition XcL = aL is written{
2ξ′(q) + ξ µ(x) = a,
ξ V ′(q) = a V (q)

where µ = m′(q)/m(q).

The first equation is an inhomogeneous linear one and its general solution is

ξ(q) =
1√
m(q)

(
a

2

∫ q√
m(q′) dq′

)
.
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The potential energy V (q) is then

V (q) = C exp
(∫ q a

ξ(q′)
dq′
)

As an example consider the equation for a 1-dimensional nonlinear oscillator studied
in 1974 by Mathews and Lakshmanan

(1 + λx2) ẍ− λx ẋ2 + α2 x = 0 , λ > 0 .

The general solution takes the form x = A sin(ω t+φ) , with the following additional
restriction linking frequency and amplitude

ω2 =
α2

1 + λA2
.

The system admits a Lagrangian formulation with Lagrangian:

Lλ(x, ẋ) =
1
2

1
1 + λx2

(ẋ2 − α2 x2) .

We can also allow negative values for λ, but when λ < 0 the values of x are limited
by the condition |x| < 1/

√
|λ|.

The system can be seen as a deformation of the harmonic oscillator or as an oscillator
with a position-dependent effective mass which depends on λ: mλ = 1

1+λx2
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Coming back to the Hamiltonian framework, let (M,ω = −dθ) be an exact symplec-
tic manifold. We denote X1 the vector field such that

i(X1)ω = θ

Note that such a vector field is such that

LX1θ = i(X1)dθ + d(i(X1)θ) = −i(X1)ω + d(i(X1)θ) = −θ + d(i(X1)θ),

and therefore
LX1ω = −ω,

because
LX1ω = −LX1(dθ) = −dLX1θ = dθ = −ω.

Given a vector field X generating a one-parameter group of non-strictly canonical
transformations, we know that there exists a real number a such that LXω = aω

and therefore the vector field X + aX1 is locally Hamiltonian, because

LX+aX1ω = aω − aω = 0.

That means that there exists a closed 1-form α such that

i(X)ω + a i(X1)ω = α.
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Conversely, given a closed 1-form α the preceding relation defines a vector field X
generating a one-parameter (local) subgroup of non-strictly canonical transformations
φε with valence eaε.

In a Darboux chart for which

ω =
n∑
i=1

dqi ∧ dpi,

if we choose

θ =
1
2

n∑
i=1

(
pi dq

i − qi dpi
)
,

we find that X1 is a dilation generator

X1 = −1
2

n∑
i=1

(
qi

∂

∂qi
+ pi

∂

∂pi

)
.

If α = dφ (at least locally), then

X = Xφ − aX1

Therefore,
XH = {H,φ} − aX1H,
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In particular, if there exists b ∈ R such that XH = bH:

{H,φ} − aX1H = bH

Using a Darboux chart, if we assume that H(q, p) = T (p) + V (q), we find

−X1H =
1
2

(
2T (p) +

n∑
i=1

qi
∂V

∂qi

)
and taking into account that

1
2

{
H,

n∑
k=1

qk pk

}
=

1
2

(
n∑
k=1

qk
∂V

∂qk
−

n∑
k=1

pk
∂T

∂pk
=

)
=

1
2

(
n∑
k=1

qk
∂V

∂qk

)
− T (p)

we obtain.

XH =

{
H,φ+

a

2

n∑
i=1

qipi

}
+ 2 a T

As before, when integrating in time from t = 0 to t = T we obtain in the limit of T
going to infinity (or when the motion is periodic)

2 a 〈〈T 〉〉 = 〈〈XH〉〉,

and when XH = bH,
2 a 〈〈T 〉〉 = bE.
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The virial’s theorem in Quantum Mechanics

A separable complex Hilbert space (H, 〈·, ·〉) can be considered as a real linear space,
to be then denoted HR. The norm in H defines a norm in HR, where ‖v‖R = ‖v‖C.

The linear real space HR is endowed with a natural symplectic structure as follows:

ω(u, v) = 2 Imag 〈u, v〉.

In fact, ω is a skew-symmetric real bilinear map and the R-linear map ω̂ : HR → H∗R
defined by ω̂(u)v = ω(u, v) is not only injective but an isomorphism. In fact, if
ω̂(u) = 0, then ω̂(u)(iu) = 2 〈u, u〉 = 0, and consequently u = 0. Riesz theorem
can be used to prove that the map is also surjective.

The Hilbert HR can be considered as a real manifold modelled by a Banach space
admitting a global chart. Moreover, for each v ∈ HR the tangent space TvHR is
canonically isomorphic to the own HR: we can associate to w ∈ HR the vector in
the tangent space TvHR defined by

χv(w)f =
d

dt
f(v + t w)|t=0,
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where f ∈ C∞(v). This is an isomorphism χv : HR → TvHR of HR with TvHR.
The identification corresponds to the one given by the free transitive action of the
Abelian group of translations.

One can see that the constant symplectic structure ω in HR, considered as a Banach
manifold, is exact, i.e., there exists a 1-form θ ∈

∧1(H) such that ω = −dθ. Such
a 1-form θ ∈

∧1(H) is, for instance, the one defined by

θ(v)[χv(w)] = −Imag 〈v, w〉,

because then ω = −dθ is a symplectic 2-form such that

ω(v)(χv(u), χv(w)) = 2 Imag 〈u,w〉.

A continuous vector field in HR is a continuous map X : HR → HR. For instance
for each v ∈ H, the constant vector field Xv defined by

Xv(w) = χw(v) = v.

It is the generator of the one-parameter subgroup of transformations of HR given by

Φ(t, w) = w + t v ,
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i.e. with the natural identification of THR with HR ×HR,

Xv : w 7→ (w, v) .

The values at a point of such vector fields generate the tangent space at the point.

Similarly, for each vector v ∈ HR there is a constant 1-form in HR, αv, given by

αv : w 7→ 〈v, w〉 .

Obviously,
αv1(Xv2) = 〈v1, v2〉 ,

and therefore
αv1+λ v2 = αv1 + λαv2 , λ ∈ R .

The 1-form θ defined above satisfies

θ(Xv) = −Imag 〈·, v〉 ,

because according to the definition of the 1-form θ,

[θ(Xv)](w) = θ(w)[Xv(w)] = θ(w)[χw(v)] = −Imag 〈w, v〉 .
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One can see that Xw[θ(Xv)] takes a constant value:

Xw[θ(Xv)](u) =
d

dt
[θ(Xv)(u+ tw)]|t=0 = −Imag

d

dt
〈u+tw, v〉|t=0 = −Imag 〈w, v〉 .

This allows us to check that ω = −dθ, because for any pair v, w ∈ H, as Xv and
Xw commute, [Xv, Xw] = 0, we have

−dθ(Xv, Xw) = −Xv θ(Xw) +Xwθ(Xv) = −2 Imag 〈w, v〉 = ω(Xv, Xw) .

As another particular example of vector field consider the vector field XA defined by
the C-linear map A : H → H, and in particular when A is skew-selfadjoint.

With the natural identification natural of THR ≈ HR ×HR, XA is given by

XA : v 7→ (v,Av) ∈ H ×H .

When A = I the vector field XI is the Liouville generator of dilations along the
fibres, ∆ = XI , usually denoted ∆ given by ∆(v) = (v, v).

Given a selfadjoint operator A in H we can define a real function in HR by

a(v) = 〈v,Av〉 ,
28



i.e.,
a = 〈∆, XA〉 .

Then,

dav(w) =
d

dt
a(v + tw)|t=0 =

d

dt
[〈v + tw,A(v + tw)〉]|t=0

= 2 Re 〈w,Av〉 = 2 Imag 〈−iAv, w〉 = ω(−iAv, w).

If we recall that the Hamiltonian vector field defined by the function a is such that
for each w ∈ TvH = H,

dav(w) = ω(Xa(v), w) ,

we see that
Xa(v) = −i Av .

Therefore if A is the Hamiltonian H of a quantum system, the Schrödinger equation
describing time-evolution plays the rôle of ‘Hamilton equations’ for the Hamiltonian
dynamical system (H, ω, h), where h(v) = 〈v,Hv〉: the integral curves of Xh satisfy

v̇ = Xh(v) = −iHv .
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The real functions a(v) = 〈v,Av〉 and b(v) = 〈v,Av〉 corresponding to two selfad-
joint operators A and B satisfy

{a, b}(v) = −i 〈v, [A,B]v〉 ,

because

{a, b}(v) = [ω(Xa, Xb)](v) = ωv(Xa(v), Xb(v)) = 2 Imag 〈Av,Bv〉 ,

and taking into account that

2 Imag 〈Av,Bv〉 = −i [〈Av,Bv〉 − 〈Bv,Av〉] = −i [〈v,ABv〉 − 〈v,BAv〉] ,

we find the above result.

In particular on the integral curves of the vector field Xh defined by a Hamiltonian
H,

ȧ(v) = {a, h}(v) = −i 〈v, [A,H]v〉 ,

what is usually known as Ehrenfest theorem:

d

dt
〈v,Av〉 = −i 〈v, [A,H]v〉 .
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This is the starting point for the Virial Theorem in Quantum Mechanics.

If the state v is stationary is obviously true, both sides are zero. In a generic state,
if we integrate between 0 and T we obtain

〈v(T ), Av(T )〉 − 〈v(0), Av(0)〉 = −i
∫ T

0

〈v(t), [A,H]v(t)〉 dt,

and if 〈v(t), Av(t)〉 remains bounded, taking the limit when T goes to infinity of the
quotient of both sides by T we find

〈〈〈v, [A,H]v〉〉〉 = 0,

which is the quantum Virial’s Theorem.

Suppose that the Hamiltonian of a quantum system is

H =
1
2
P ·P + V (X),

Let now G be given by

G =
1
2

(X ·P + P ·X) .

We first remark that as X ·P−P ·X = i ~, [X ·P, H] = [P ·X, H].
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Taking into account the algebraic relation [AB,C] = A[B,C]+ [A,C]B one can see
that

[X ·P, 1
2
P ·P] =

3∑
i=1

[
Xi,

1
2
P ·PPi

]
= i ~P ·P,

while

[X ·P, V (X)] =
3∑
i=1

Xi [Pi, V (X)] = −i ~X ·∇V (X),

and therefore

〈v, [X ·P, H]v〉 = i ~ (〈v,P ·Pv〉 − 〈v, (X ·∇V (X))v〉) .

and we obtain that

〈v,P ·Pv〉 − 〈v, (X ·∇V (X))v〉 = 0,

which is the quantum version of the standard virial theorem

〈v,P ·Pv〉 = 〈v, (X ·∇V (X))v〉

Note that G = 1
2 (X ·P + P ·X) is the generator fo the dilation subgroup.
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If a Lie group G acts on M on the left, then if µ is a G-invariant volume, we can
define the so called quasi-regular unitary representation in (L2(M), µ) as follows:

(U(g)ψ)(gx) = ψ(g−1x).

When µ is not G-invariant but quasi–invariant, in order to get an unitary representa-
tion we must correct the right-hand side by the square root of the Radon-Nikodym
derivative.

In the case of dilations in the one-dimensional case, M = R, and if G is the dilation
group there is no invariant measure. The quasi-regular representation then turns out
to be given by.

[U(λ)ψ](x) = λ−1/2ψ(λ−1x).

The expression so defined is a one-parameter group of transformations with canonical
parameter α such that λ = eα,

[U(α)ψ](x) = e−α/2ψ(e−αx).

and its generator comes form

∂e−α/2ψ(e−ax)
∂α

∣∣∣∣
α=0

= −1
2
ψ(x)− x ∂ψ

∂x
,
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from where we see that the generator of such action is

G =
1
2

+ x
∂

∂x
=

1
2

(
x
∂

∂x
+

∂

∂x
x

)
.

For M = R3, the quasi-regular representation is

[U(λ)ψ](x) = λ−3/2ψ(λ−1x).

or in terms of the parameter α,

∂e−α/2ψ(e−ax)
∂α

∣∣∣∣
α=0

= −3
2
ψ(x)− x ·∇ψ,

from where we see that the generator of such action is

G =
3
2

+ x ·∇ =
1
2

(x ·∇ + ∇ · x) .
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Finally, some comments on Fock approach to the Virial’s Theorem in Quantum
Mechanics:

Starting with an arbitrary wave function φ we consider the one-parameter family of
trial functions {φλ = U(λ)φ | λ ∈ R∗}.

The expectation value of the kinetic term is homogeneous of degree −2 and the
potential is assumed to be homogeneous of degree k:

〈φλ, Tφλ〉 = λ−2 〈φ, Tφ〉, 〈φλ, V φλ〉 = λk 〈φ, V φ〉,

therefore
Eλ = 〈φλ, Tφλ〉 = λ−2 〈φ, Tφ〉+ λk 〈φ, V φ〉.

The best approach to an eigenvalue in the family will be by a value of λ such that
dEλ
dλ

= −2λ−3 〈φ, Tφ〉+ kλk−1 〈φ, V φ〉 = 0.

In particular, if φ is actually an eigenvector, then the extremal is found for λ = 1,

2 〈φ, Tφ〉 = k 〈φ, V φ〉,

and we reobtain in this way the Virial’s theorem for eigenstates of H.
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