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Abstract

Double vector bundles, of which the double tangent bundle
is a standard example, were introduced by Pradines in 1968.

In this talk | shall discuss how certain double vector bundles
and other double structures can be used in the construction
of jet bundles.
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An elementary observation

Consider a real vector space V, of finite dimension n + 1.
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If x € V* is non-zero then
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is an n-dimensional affine space.
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Consider a real vector space V, of finite dimension n + 1.
If x € V* is non-zero then
Ax={v eV :aw) =1}
is an n-dimensional affine space.

The group of non-zero real numbers acts on V — {0} by
multiplication, with quotient PV, an n-dimensional projective
space.
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An elementary observation
Consider a real vector space V, of finite dimension n + 1.
If x € V* is non-zero then
Ax={v eV :aw) =1}
is an n-dimensional affine space.

The group of non-zero real numbers acts on V — {0} by
multiplication, with quotient PV, an n-dimensional projective
space.

We regard Ax C PV by v ~ [vV].
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An elementary observation
Consider a real vector space V, of finite dimension n + 1.
If x € V* is non-zero then
Ax={v eV :aw) =1}
is an n-dimensional affine space.

The group of non-zero real numbers acts on V — {0} by
multiplication, with quotient PV, an n-dimensional projective
space.

We regard Ax C PV by v ~ [vV].

The fibrations found in several jet structures are related in
much the same way as V, Ay and PV
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First-order velocities

Manifold E; connected open O C R™ with 0 € O
‘m-curve’ y : O - E
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First-order velocities

Manifold E; connected open O C R™ with 0 € O
‘m-curve’ y : O - E

m-velocity manifold
TmE = {joy : Yy an m-curve}
projection map

Tme : ImE — E, Tme (Joy) = y(0)
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First-order velocities

Manifold E; connected open O ¢ R™ with 0 € O
‘m-curve’ y : O - E

m-velocity manifold
TmE = {joy : Yy an m-curve}
projection map

Tme : ImE — E, Tme (Joy) = y(0)

Alternative descriptions:

TmE = ®F TE
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First-order velocities

Manifold E; connected open O ¢ R™ with 0 € O
‘m-curve’ y : O - E

m-velocity manifold
TmE = {joy : Yy an m-curve}
projection map

Tme : ImE — E, Tme (Joy) = y(0)

Alternative descriptions:

TmE = @ TE = TE @ R™*

The double group

0000
00000
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Regular first-order velocities

submanifold of regular m-velocities

TmE

{joy € TiE : y an immersion}

o o
TmE = TmE|7°_mE . TmE - E
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Regular first-order velocities

submanifold of regular m-velocities
TmE = {joy € TimE : y an immersion}
-?—mE = TmE|,1°,mE . me i E

The prolongation of f : E; — E,,

Tmf : TmE1 — TmkE2, T f Goy) = jo(f o y)

need not restrict to a map me - "me.
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Regular first-order velocities

submanifold of regular m-velocities
TmE = {joy € TimE : y an immersion}
-?—mE = TmE|,1°,mE . me i E

The prolongation of f : E; — E,,

Tmf : TmE1 — TimEo, Tmf(joy) = Jo(f °oy)

need not restrict to a map me - "me. Define

TT f = oy € TmEL : f oy an immersion}
Tinf : fﬂ%@f - 70qu2-
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First-order contact elements

First order jet group

Ly = {jop:¢p:0 — $(0) c R™ diffeomorphism, ¢p(0) = 0}
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First-order contact elements

First order jet group
L = {jop:¢d:0 — $(0) c R™ diffeomorphism, ¢(0) = 0}
Ly, acts on Ty E on the right,

& : Ly X TnE — TmE, x(jod, joy) = jo(y o ¢p)
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First-order contact elements

First order jet group

L = {jop:¢d:0 — $(0) c R™ diffeomorphism, ¢(0) = 0}

Ly, acts on Ty E on the right,
o: Ln X TE — TE,  «(jod, joy) = jo(y o )

Action restricts to Ly, X ”f"mE — Zf“mE;
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First-order contact elements

First order jet group

Ly = {jop:¢p:0 — $(0) c R™ diffeomorphism, ¢p(0) = 0}

Ly, acts on Ty E on the right,

& : Ly X TnE — TmE, x(jod, joy) = jo(y o ¢p)

Action restricts to Ly, X ”f"mE — Zf“mE;
restricted action is free.
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First-order contact elements
First order jet group
L = {jop:¢d:0 — $(0) c R™ diffeomorphism, ¢(0) = 0}
Ly, acts on Ty E on the right,
& :Lip X TwE = TmE,  a(jod, joy) = jo(y o ¢)

Action restricts to Ly, X ”f"mE — Zf“mE;
restricted action is free.

Quotient J;,E = Io"mE/Lm is a Hausdorff manifold.
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First-order contact elements
First order jet group
L = {jop:¢d:0 — $(0) c R™ diffeomorphism, ¢(0) = 0}
Ly, acts on Ty E on the right,
& :Lip X TwE = TmE,  a(jod, joy) = jo(y o ¢)

Action restricts to Ly, X ”f"mE — Zf“mE;
restricted action is free.
Quotient J;,E = Io"mE/Lm is a Hausdorff manifold.

Projection p : ”me — JmE is an open map and a principal
L,,-bundle.
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First-order contact elements
First order jet group
L = {jop:¢d:0 — $(0) c R™ diffeomorphism, ¢(0) = 0}
Ly, acts on Ty E on the right,

& : Ly X TnE — TmE, x(jod, joy) = jo(y o ¢p)

Action restricts to Ly, X ”f"mE — Zf“mE;
restricted action is free.

Quotient J;,E = Io"mE/Lm is a Hausdorff manifold.

Projection p : ”me — JmE is an open map and a principal
L,,-bundle.

Define tE : JmE — E by Ttime([joy]) = ¥(0) = Tme (o).
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1T : E — M fibration
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First-order jets of sections
1T : E — M fibration

TF 1 = {joy : oy an immersion} C T E
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First-order jets of sections
1T : E — M fibration
TF 1 = {joy : oy an immersion} C T E

Put JEmr = p(TT 1) € JimE

The double group

0000
00000
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First-order jets of sections
1T : E — M fibration
TF 1 = {joy : oy an immersion} C T E

Put JEmr = p(TT 1) € JimE

Also define the manifold of jets of local sections

Jo={jxc:xeWcM, o:W-E, moo =id}
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First-order jets of sections
1T : E — M fibration
TT 1t = {joy : T o y an immersion} C T\ E

Put JEmr = p(TT 1) € JimE

Also define the manifold of jets of local sections
Jo={jxoc:xeWcM, o:W-E, moo0o =id}
Map J1 — J;, 7T by
Jx0 = [jo(g o p™h)]

where  is any chart defined around x € M with
Y(x)=0eR™,
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First-order jets of sections
1T : E — M fibration
TT 1t = {joy : T o y an immersion} C T\ E

Put JEmr = p(TT 1) € JimE

Also define the manifold of jets of local sections
Jo={jxoc:xeWcM, o:W-E, moo0o =id}
Map J1 — J;, 7T by
Jx0 = [jo(g o p™h)]

where  is any chart defined around x € M with
Y(x) =0 € R™. This is a well-defined diffeomorphism.
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Double velocities

The double velocity manifold is
T TmE = {joy : Yy an m-curve in T, E}
and is a double vector bundle

Mm(TmE)» T'mTme : TmTmE — TiE.
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Double velocities

The double velocity manifold is
T TmE = {joy : Yy an m-curve in T, E}
and is a double vector bundle
m(TmE)s ImTmE : TmTmE — TmE.

Submanifolds Ty TmE, TwmTmE, TmTmE,
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Double velocities

The double velocity manifold is
T TmE = {joy : Yy an m-curve in T, E}
and is a double vector bundle
m(TmE)s ImTmE : TmTmE — TmE.

Submanifolds Ty TmE, TwmTmE, TmTmE,
and also T7 Tpe, T0 Toe.
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Double velocities

The double velocity manifold is
T TmE = {joy : Yy an m-curve in T, E}
and is a double vector bundle
m(TmE)s ImTmE : TmTmE — TmE.

Submanifolds Ty TmE, TwmTmE, TmTmE,
and also T2 tyme, TE Tme.

Vertical double velocity manifold

VinTme = {joY : TmTme(Joy) = 0}

11

ThETE @7, F @° R™*.
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Double velocities

The double velocity manifold is
T TmE = {joy : Yy an m-curve in T, E}
and is a double vector bundle
m(TmE)s ImTmE : TmTmE — TmE.

Submanifolds Ty TmE, TwmTmE, TmTmE,
and also T2 tyme, TE Tme.

Vertical double velocity manifold

VinTme = {joY : TmTme(Joy) = 0}

11

TheTE @7, F @° R™*.
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Prolongations and semiprolongations
If y is an m-curve in E then Jy,
JY (@) = jry = jo(y o t)

(t; : R™ — R™ js the translation map t;(s) =t + s) is an
m-curve in T,y E, the prolongation of y.



Introduction First-order structures Double velocities The double group

(e]e} (e} O®@0000 0000
oo} [e]e]e} 00000

Prolongations and semiprolongations

If y is an m-curve in E then Jy,

JY () = jry = jo(y o ty)

(t; : R™ — R™ js the translation map t;(s) =t + s) is an
m-curve in T,y E, the prolongation of y.

If y is an immersion then so is its prolongation Jy.
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Prolongations and semiprolongations

If y is an m-curve in E then Jy,

JY () = jry = jo(y o tr)
(t; : R™ — R™ js the translation map t;(s) =t + s) is an
m-curve in T,y E, the prolongation of y.
If y is an immersion then so is its prolongation Jy.

An m-curve y in T,y E is a prolongation if there is an m-curve
y in E with y = Jy.
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Prolongations and semiprolongations

If y is an m-curve in E then Jy,

JY () = jry = jo(y o tr)
(t; : R™ — R™ js the translation map t;(s) =t + s) is an
m-curve in T,y E, the prolongation of y.
If y is an immersion then so is its prolongation Jy.
An m-curve y in T,y E is a prolongation if there is an m-curve
y in E with y = Jy.
If y is a prolongation then y = j(TmEg o y).
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Prolongations and semiprolongations
If y is an m-curve in E then Jy,
JY (@) = jry = jo(y o t)

(t; : R™ — R™ js the translation map t;(s) =t + s) is an
m-curve in T,y E, the prolongation of y.

If y is an immersion then so is its prolongation Jy.

An m-curve y in T,y E is a prolongation if there is an m-curve
y in E with y = Jy.

If y is a prolongation then y = j(Tmg o y).

An m-curve y in T,,E is a semiprolongation if

Y(0) = j(Tme 0 ¥)(0) = jo(Tme o ¥).
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Semiholonomic velocities

A double velocity joy € T TinE is semiholonomic if some
representative m-curve y is a semiprolongation.
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Semiholonomic velocities

A double velocity joy € T TinE is semiholonomic if some
representative m-curve y is a semiprolongation.
(Then every representative y is a semiprolongation.)
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Semiholonomic velocities

A double velocity joy € T TinE is semiholonomic if some
representative m-curve y is a semiprolongation.
(Then every representative y is a semiprolongation.)

JjoY is semiholonomic exactly when

T (T E) (Jo¥) = TmTme (Joy) € TmE.
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Semiholonomic velocities

A double velocity joy € T TinE is semiholonomic if some
representative m-curve y is a semiprolongation.
(Then every representative y is a semiprolongation.)

JjoY is semiholonomic exactly when
Tm(TmE) (Jo¥) = TmTme (Joy) € TmE.
The submanifold T2 E = {joy € T TmE, semiholonomic}

defines an affine sub-bundle of the vector bundle
Tm(TmE) : ImTmE — E, modelled on the vector bundle

VinTme = 7,5 TE ©7, F @ R™* — TpE.
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The exchange map

Amap ¢ : O X O — E is a double m-curve.
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The exchange map

Amap ¢ : 0 x O — E is a double m-curve.

Foreachs € O

Ys:0 —E, Ys(t) = Y(s,t)

is an m-curve in E, so that joys € T\ E.
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The exchange map

Amap ¢ : 0 x O — E is a double m-curve.

Foreachs € O

Ys:0 —E, Ys(t) = Y(s,t)

is an m-curve in E, so that joys € T),E.

Thus s — joWs is an m-curve in Ty, E, so that

Jo(s = jows) € TimTmE.
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The exchange map

Amap ¢ : 0 x O — E is a double m-curve.

Foreachs € O

Ys:0 —E, Ys(t) = Y(s,t)

is an m-curve in E, so that joys € T),E.

Thus s — joWs is an m-curve in Ty, E, so that

Jo(s = jows) € TimTmE.

The exchange map e : Ty TinE — Ty TinE is well-defined by
W — ¢ where ¢(t,s) = @(s,t).



Introduction First-order structures Double velocities The double group

(e]e} (e} O000e0 0000
oo} [e]e]e} 00000

Holonomic velocities

A double velocity joy € Ty TimE is holonomic if some
representative m-curve y is a prolongation.
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Holonomic velocities

A double velocity joy € Ty TimE is holonomic if some
representative m-curve y is a prolongation.
(But not every representative y is a prolongation.)
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Holonomic velocities

A double velocity joy € Ty TimE is holonomic if some
representative m-curve y is a prolongation.
(But not every representative y is a prolongation.)

JjoY is holonomic exactly when it is fixed by the exchange
map, e(joy) = Jjoy-
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Holonomic velocities

A double velocity joy € Ty TimE is holonomic if some
representative m-curve y is a prolongation.
(But not every representative y is a prolongation.)

JjoY is holonomic exactly when it is fixed by the exchange
map, e(joy) = Jjoy-

The submanifold T2 E = {joy € TynTmE, holonomic} defines
an affine sub-bundle of the vector bundle
Tm(TwE) - ImTmE — E, modelled on the vector bundle
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Holonomic velocities

A double velocity joy € Ty TimE is holonomic if some
representative m-curve y is a prolongation.
(But not every representative y is a prolongation.)

JjoY is holonomic exactly when it is fixed by the exchange
map, e(joy) = Jjoy-

The submanifold T2 E = {joy € TynTmE, holonomic} defines
an affine sub-bundle of the vector bundle
Tm(TwE) - ImTmE — E, modelled on the vector bundle

The map {jdy} — TZE, jiy — jo(jy) is a bijection.
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The holonomic projection and the curvature

Every prolongation is a semiprolongation,
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The holonomic projection and the curvature

Every prolongation is a semiprolongation,
so every holonomic double velocity is semiholonomic:
T2,E C T2 E as an affine sub-bundle.
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The holonomic projection and the curvature

Every prolongation is a semiprolongation,
so every holonomic double velocity is semiholonomic:
T2,E C T2 E as an affine sub-bundle.

Vertical double velocities have symmetric and
skew-symmetric components: Vi, Timre = V), Tk ©1,,F Vi TmkE,
~ 2 *

T} TE ®1,, 8 N> R"™*

1

A
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The holonomic projection and the curvature

Every prolongation is a semiprolongation,
so every holonomic double velocity is semiholonomic:
T2,E C T2 E as an affine sub-bundle.

Vertical double velocities have symmetric and
skew-symmetric components: Vi, Timre = V), Tk ©1,,F Vi TmkE,

VnTme = T TE 1, S°R™*

T} TE ®1,, 8 N> R"™*

1

A

Furthermore,
T2E &1, p V) Tme — THE

is an isomorphism of affine bundles over T),E.
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The holonomic projection and the curvature

Every prolongation is a semiprolongation,
so every holonomic double velocity is semiholonomic:
T2,E C T2 E as an affine sub-bundle.

Vertical double velocities have symmetric and
skew-symmetric components: Vi, Timre = V), Tk ©1,,F Vi TmkE,

VnTme = T TE 1, S°R™*

T} TE ®1,, 8 N> R"™*

1

Furthermore,
T2E &1, p V) Tme — THE
is an isomorphism of affine bundles over T),E.

The skew-symmetric component of a semiholonomic double
velocity is called its curvature.
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The double structure for regular double velocities

o o o © TimTme (o]
Ton(Tmb) TmE
o
TmE E
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The double structure for regular double velocities

o o o o TmeE o
TmTmE O TY Tme TmE
Tm(]o"mE) TmE
TmE E
TmE
Put
72 ) ; £ 2 i
ToE =THEN T, TyE, Ty E =Ty EN Ty TiE
then

o Q o o
T2EcCTHEC Ty Tk,
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The velocity group

The velocity manifold Ty, L,, of the jet group Ly, is itself a Lie
group.
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velocities

The velocity group

The velocity manifold Ty, L,, of the jet group Ly, is itself a Lie
group.

If oy, 09 are m-curves in Ly, then jyo1, jooo € TynLm, and
Joo1 - jooo = jo(0 - 02)

where 07 - 09 is the m-curve t — o7 (t)0oo(t).
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The velocity group

The velocity manifold Ty, L,, of the jet group Ly, is itself a Lie
group.

If oy, 09 are m-curves in Ly, then jyo1, jooo € TynLm, and
Joo - joo2 = jo(oq - 02)
where 07 - 09 is the m-curve t — o7 (t)0oo(t).

(This construction applies to any Lie group, and is a
generalisation of the tangent group construction.)
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Double velocities to double contact elements
The free right action of L, on IO“mE,
oLy X TmE — TmE,  «(od,joy) = joly o P)
gives rise to a free right action of T;,,Ly, on Tmme,
& : T XTin TmE = T TmE,  &(joo, joy) = jo(Xo (0, y)oA)

where o is an m-curve in Ly, and A : R™ — R™ x R™ is the
diagonal inclusion map.



Double velocities

ooe

Double velocities to double contact elements
The free right action of L, on f“mE,
o : Lip X TmE — TwE,  aljod,joy) = jo(y o P)
gives rise to a free right action of T;,,Ly, on Tmme,
& : T XTin TmE = T TmE,  &(joo, joy) = jo(Xo (0, y)oA)

where o is an m-curve in L, and A : R™ — R™ x R™ is the
diagonal inclusion map.

The quotient Tmf“mE/TmLm may be identified with the
velocity manifold Ty, JiE.
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Double velocities to double contact elements
The free right action of L, on f“mE,
o : Lip X TmE — TwE,  aljod,joy) = jo(y o P)
gives rise to a free right action of T;,,Ly, on Tmme,
& : T XTin TmE = T TmE,  &(joo, joy) = jo(Xo (0, y)oA)

where o is an m-curve in L, and A : R™ — R™ x R™ is the
diagonal inclusion map.

The quotient Tm"f“mE/TmLm may be identified with the
velocity manifold Ty, JiE.

Ly, now acts freely on the open submanifold IO"meE, giving
the quotient J,,,JmE.
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The double group

The right action of the jet group L, on the velocity group
TinLm
(Jo, joo) — jo(o o )

is an action by automorphisms.
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The double group

The right action of the jet group L, on the velocity group
TmLm
(Jo, joo) — jo(o o )

is an action by automorphisms.
Define the double group D, to be the semidirect product
Ly X Ty Loy .

An element of Dy, is a pair (jo¢, joo) where ¢ is a local
diffeomorphism of R™ fixing zero and o is an m-curve in
L.
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Double m-curves and the double group
Let ¢ : O X O — R™ be a double m-curve. Put

Ps(t) =@is, t) —w(s,00,  @e(s) =w(s,t) —ywo,t).
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Double m-curves and the double group
Let ¢ : O X O — R™ be a double m-curve. Put
Ys() = @(s,t) —w(s,0),  Pels) = wis,t) —w(0,t).

Suppose both s and y; are local diffeomorphisms of R™
for all s,t, so that joWs, joWt € L. Then t — joy; is an
m-curve in Ly,.

Any element (jo¢, joo) € Dy, may therefore be written as

(JoWs=0, Jo(t = joWr)) .
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Double m-curves and the double group
Let ¢ : O X O — R™ be a double m-curve. Put

Ps(t) = (s, t) —w(s,00,  @e(s) =@(s,t) —w(o,t).

Suppose both s and y; are local diffeomorphisms of R™
for all s,t, so that joWs, joWt € L. Then t — joy; is an
m-curve in Ly,.

Any element (jo¢, joo) € Dy, may therefore be written as
(JoWs=0, Jo(t = jot)).

Two such double m-curves , x determine the same element
of D;;, when

oy _ox oy _ox ’w _ °x
os  0s’ ot ot’ 0sdt osot’
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Holonomic and semiholonomic subgroups

An element (jo¢, joo) € Dy, is holonomic if o0 = j¢
(so that the element is (job, j2)).
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Holonomic and semiholonomic subgroups

An element (jo¢, joo) € Dy, is holonomic if o0 = j¢
(so that the element is (job, j2)).

{(jog, jéd)} is a closed Lie subgroup of Dy, isomorphic to
the second order jet group L?,.
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Holonomic and semiholonomic subgroups

An element (jo¢, joo) € Dy, is holonomic if o0 = j¢
(so that the element is (job, j2)).

{(jog, jéd)} is a closed Lie subgroup of Dy, isomorphic to
the second order jet group L?,.

An element (jo¢, joo) € Dy, is semiholonomic if o(0) = jo¢b
(so that the element is (o (0), joo)).
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Holonomic and semiholonomic subgroups

An element (jo¢, joo) € Dy, is holonomic if o0 = j¢
(so that the element is (job, j2)).

{(jog, jéd)} is a closed Lie subgroup of Dy, isomorphic to
the second order jet group L?,.

An element (jo¢, joo) € Dy, is semiholonomic if o(0) = jo¢b
(so that the element is (o (0), joo)).

{(Jop, joo)} is a closed Lie subgroup i,?n C Dy
diffeomorphic to Ty, Ly, but not isomorphic as a group.
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The curvature subgroup

There is a map Vv : Dy, — Dy, given in terms of double curves
by
Wis,t) — 3((s,t) + y(t,s)).

This restricts to a surjective map L2, — L2,.
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The curvature subgroup

There is a map Vv : Dy, — Dy, given in terms of double curves
by
Wis,t) — 3((s,t) + y(t,s)).

This restricts to a surjective map L2, — L2,.
There is an injective map u : Ly, — i,zn given by

uCod) = (Jod, jo(t = jop)).
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The curvature subgroup

There is a map Vv : Dy, — Dy, given in terms of double curves

by
Wis,t) — 5(@(s,t) + P(t,s)).

This restricts to a surjective map L2, — L2,.
There is an injective map u : Ly, — i,zn given by

uCod) = (Jod, jo(t = jop)).

The curvature subgroup i%i is the semidirect product

L2, = u(Ly) X ker V.
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The double group action

&(jo, joy) = Jo(x o (07, y) 0 A)
The action is free on Ty, T E, with quotient Ty, Jim E.
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The double group action

&(joor, joy) = Jo(& o (07,y) o A)

The action is free on Ty, T E, with quotient Ty, Jim E.

& Ly X TinJmE — Tng]mE, x(joP, joy) = jo(y o P)
The action is free on Ty, J; E, with quotient J,n JmE.
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The double group action

&(jo, joy) = Jo(x o (07, y) 0 A)
The action is free on Ty, T E, with quotient Ty, Jim E.

& Ly X TinJmE — Tng]mEy x(joP, joy) = jo(y o P)
The action is free on Ty, J; E, with quotient J,n JmE.

The double group has an action

(o, joo), joy) = &(joo, x(joep, joy)) -

The restriction of the action to ”f"yTnp is free, and the quotient
may be identified with J,nJim E.
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The double group action

&(jo, joy) = Jo(x o (07, y) 0 A)
The action is free on Ty, T E, with quotient Ty, Jim E.

& Ly X TinJmE — Tng]mE, x(joP, joy) = jo(y o P)
The action is free on Ty, J; E, with quotient J,n JmE.

The double group has an action
(o, joo), joy) = &(joo, x(joep, joy)) -

The restriction of the action to f‘;fnp is free, and the quotient
may be identified with J,nJim E. 7

We also consider the restriction to 7T T, ¢ TF p, with
quotient J.} 1T E.
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The double structure for contact elements

TmTmE

]O—'% 7TmE TmE

Tmp T'mTtmE

o o o o

T o
m(TmE) P 1% TmE

Y
JmTtmE

JmJmE D J%:Lﬂ'mE —— JmE

Tt (JmE) TUmE

Y Y Y Y

JmE

TmE
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Semiholonomic contact elements

Let p denote the projection TT p — JuJmE,
and also the restricted map T, Tme — Jh TtmE.
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Semiholonomic contact elements
Let p denote the projection T mP — JmJmE,
and also the restricted map T%ng - JmnmE.

A contact element is semlholonomlc if it is of the form
p(joy) for some joy € T E.
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Semiholonomic contact elements
Let p denote the projection T mP = IJmJImE,
and also the restricted map TT TmE — JmnmE.

A contact element is semlholonomlc if it is of the form
p(joy) for some joy € T E.

The submanifold
J2E = {p(joy) semiholonomic}

may be identified with the quotient T2,E/[2,.
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Semiholonomic contact elements
Let p denote the projection T mP — JmJmE,
and also the restricted map T%ng - JmnmE.

A contact element is semlholonomlc if it is of the form
p(joy) for some joy € T E.

The submanifold
J2E = {p(joy) semiholonomic}
may be identified with the quotient T2,E/12,.

f,%,LE — JmkE is an affine bundle, modelled on the vector
bundle Vi Tme/L2, — JmE.
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Holonomic contact elements

A contact element is holonomic if it is of the form p(jyy) for
some joy € T%,E.

The submanifold
JmE = {p(joy) holonomic}
may be identified with the quotient T2, E/L2,.

J?nE — JmE is an affine bundle, modelled on the vector
bundle V., Ty /L2, — JmE.
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Curvature of semiholonomic contact elements

The decomposition
Vm%mE = V;r/,’%mE (&) Vy/ﬁ%mE
projects to a decomposition

VinTme/L3, = V) Tme/L2, @ V) Tme/L, .
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Curvature of semiholonomic contact elements

The decomposition
Vm%mE = Vy\;l%mE (&) Vy/;},‘-?—mE
projects to a decomposition

VinTme/L3, = V) Tme/L2, @ V) Tme/L, .

This gives a decomposition of a semiholonomic contact
elementin J2 F

as the sum of a holonomic contact element in J2 E
and a curvature element in V%TmE/L%Q.
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